I frequently use current events in math class. This is our latest endeavor! The internet is full of attention grabbing headlines about this including: Chinese space station carrying TOXIC chemicals to CRASH into Europe or New York NEXT WEEK Chinese space station: Tiangong1 could crash into Earth and hit Europe next week And this one that sounds like a movie ad: China’s Out of Control Space Station Coming to a City Near You! Don’t Panic! Despite the dire warnings, you are not at risk of being obliterated by a space lab crashing through your roof. Most of the lab will burn up as it reenters the Earth’s atmosphere with remaining debris scattering over a large area. But scientists around the world are tracking Tiangong1 and making models to predict when and where it will land. Here’s one article that explains how they are doing it: https://www.livescience.com/62077tiangongreentrydate.html While the models being developed to pinpoint the reentry and landing sites must consider an incredible number of variables and depend on sophisticated modeling tools, the basics of understanding the path of this or any other satellite or projectile only require an understanding of the polynomial functions that we’ve been studying in Algebra this month. Path of a Space Lab in Orbit While in orbit the Tiangong1 Space Lab, like all other satellites, travels in an ellipse. We won’t work with ellipses until PreCalculus, but the equation is just a twovariable version of the equations we’ve been working with this week: Where Although we haven’t studied this in class yet, you can try to graph an ellipse using the same technique of picking values for one variable and solving for the other then plotting the points. Try finding points. Then, graph these ellipses: Look at your graphs and use the analysis tools we learned in class to think about what happens when you change the value of any of the constants in the equation. Path of a Space Lab when it Slows Down Many things will make a satellite, such as the Tiangong1 Space Lab, change course or slow down. Normally, ground control corrects the path by activating one or more engines on the satellite. In 2016, China’s space agency lost its connection to the Tiangong1 Space Lab, so it hasn’t been able to correct its path for two years. As a satellite slows down, its path becomes less elliptical and more circular. Mathematically, the values of A and B in the equation for the ellipse become closer to each other. Try graphing these to see what happens: Notice that the first equation gave you a long, stretched out ellipse. Each subsequent equation gives you a rounder ellipse until you end up with a circle in the last equation. (Mathematicians call this degree of stretchiness “eccentricity” and is usually calculated using the variable e.) Notice that if A = B, the equation for the ellipse become the same as the equation for a circle with : C = r^2 If a satellite traveling in a circle slows down further, its path become a spiral and eventually follows the path of a projectile. Path of Space Lab Debris This week we worked on solving equations in the form Ax^2 + Bx + C = 0. where A, B and C were meaningless coefficients and x was a meaningless variable. We can apply our understanding of this basic quadratic equation by assigning values to each of these as follows: Substituting these variables gives us: Since the altitude of any object on the ground is zero, we can find the time it takes for a projectile to land by solving the following equation: This is the standard equation used to figure out how long a baseball or rocket will be airborne before it lands on the ground. Then the time can be used to find the distance traveled by putting it into a simple equation that normally looks like this: Where: We can use this equation for debris from Tiangong1 Space Lab after it reenters the Earth’s atmosphere. Last year, in PreAlgebra we played with the equation for the Force Due to Gravity: We used this to confirm the acceleration due to gravity close to the surface of the Earth and to understand why there is very little gravitational force in the space station. When we get to Calculus we’ll be able to work with cases where g is a variable this is constantly changing over time. Solving Mathematical Problems of Space Travel Using the quadratic equations that we learned in class, it seems like the path of the Tiangong1 Space Lab has three distinct parts. But we can see that the circle is just a special type of ellipse. To see how projectile motion and orbiting are related think about this:
In “Hidden Figures” Katherine Goble wrestled with the problem of how the path of a rocket would change from an elliptical orbit to a parabolic fall to Earth. Rewatch the movie and to find her “aha” moment when she realized that these two paths could be described with one equation. That equation involves trigonometry and polar coordinates. You can see Ms. Goble work out the mathematics of this in the movie. The unifying equation is: Further Study I know what you’re going to ask me and the answers are: “No, we can’t spend our entire next class meeting playing with these equations. You don’t yet have that math background to derive all of them. BUT we can spend part of the class period playing with projectile motion since it ties into the quadratic functions that we worked on.” “Yes, some of these equations are the ones that Dylan derived and wrote on the window last year. As sad as it was to erase his work, I’ve very proud that you were able to add the derivation of the quadratic equation to the window last week.” “Yes,I recommend that you spend some of your time off of school doing your own research on this.” I suggest the following: http://www.physicsclassroom.com/class/circles/Lesson4/CircularMotionPrinciplesforSatellites Rewatch the movie Hidden Figures. Take A Math Class with Ms. VoitWhat is Logic?
In the United States, formal training in logic is often limited to writing formal proofs in high school geometry classes. Yet, logic can easily be introduced to younger students through fun games and puzzles.
The first time I saw him, he reminded me so much of Q. The way he rolled his head back when he was thinking. His lack of eye contact when speaking. His abnormally precise language, his obsession with numbers, especially very large numbers resulting from doubling, irrational numbers and those resulting from functions unknown to any mathematician other than himself. I played with him the way I’ve played with countless other children I’ve met like this. I created patterns and let him expand on the series. I invented functions using made up notation to see what he would do with them. His mother, anxious that he would make a good impression, encouraged him to look at me and answer my questions. “Wait” I hush her, almost in a whisper. “He’s thinking.” Before each math class, I check and restock all the supplies my students will need: wide ruled paper, colored pencils, crayons, and pens. Pens? Not Pencils? Yes, pens not pencils – black and purple pens to be precise. I know this is unconventional but there’s a method to my madness. Think about it: Why do we use pencils for math? Normally this question is met with a blank stare since the use of pencils for math is so universal that most have never considered questioning this convention. The obvious answer, of course, is to erase our mistakes but, why do we want to erase our mistakes when we know that we learn from our mistakes?
While the ability to memorize math facts is not related to mathematical reasoning skills required for higher level math it greatly influences the perception of a child’s math ability. Compare two children learning to add fractions. They are given the task of calculating 1/14 + 1/21. Both equally understand the concept and procedure to add fractions.

Rita VoitRita Voit is the founder of HEROES Academy for the Gifted. Archives
March 2018
Categories 